Analyzing average rig time and ease of drilling in Indian sedimentary basins: an informative tool for exploration decision-making

Surajit Gorain and Pralay Sen
Directorate General of Hydrocarbons, Ministry of Petroleum and Natural Gas, Uttar Pradesh, India

ABSTRACT
Hydrocarbon exploration entails complex and costly endeavors, with drilling activities accounting for the highest expenses. To facilitate informed decision-making for geoscientists and investors, this study presents a template highlighting the average rig days and drilling ease in Indian sedimentary basins. Leveraging data from over 19,000 wells across these basins, a comprehensive analysis was conducted. While the physics and chemistry of drilling are well understood, uncertainties arise from local geological conditions, well specifications, contractor expertise, timely rig availability, market factors, and local regulations. By filtering out extreme rig times affected by these factors, average rig time (ART) and average total depth (ATD) were calculated for each basin using a simple averaging approach. ART was visualized as a basin-wise bubble map, providing an overview of the drilling duration required to reach total depth. This aids in estimating drilling costs for future wells in relatively unexplored areas. Additionally, a contour map incorporating basin-wise ATD was generated, offering insights into structural variations and basement configurations. Combining ART and ATD, a single factor known as the ease of drilling (EOD) was calculated and presented as a bubble map across Indian sedimentary basins. This map serves as a valuable tool for investors, providing information on the optimal depth and duration of drilling in each basin and aiding decision-making processes for exploration projects.

KEYWORDS
Average days; Data analysis; Bubble map; Easiness of drilling; Average total depth

ARTICLE HISTORY
Received 19 June 2023; Revised 26 August 2023; Accepted 4 September 2023

Introduction
In the past few decades, significant research has been conducted to understand the factors influencing the Rate of Penetration (ROP) in drilling operations. Initially, empirical models were developed to optimize drilling parameters, establishing empirical expressions for bit life and ROP using Weight on Bit (WOB), depth, and revolutions per minute (RPM). Researchers like Maurer introduced models to predict ROP [1], while Eckel demonstrated the impact of overbalanced pressure on drillability [2]. Bourgoine and Young developed a highly influential empirical model for ROP optimization [3], which was later refined by Warren and Al-Betairi et al. [4,5]. Maidla and Ohara contributed by developing optimization software for roller-cone bits, effectively reducing drilling costs [6]. Motahhari et al. developed a Polycrystalline Diamond Compact (PDC) model incorporating confined compressive strength (CCS), RPM, WOB, and bit size [7]. However, these physics-based models rely on empirical coefficients and are limited by lithology dependence and calibration variability.

Researchers have also explored alternative approaches, such as metaheuristic techniques like the rain optimization algorithm (ROA), as well as artificial intelligence (AI) and hybrid models, for accurate ROP prediction. Despite these advances, there is currently no available document or template in India that can accurately envisage the Average Rig Time (ART) or EOD specifically for the Indian sedimentary basins, even though a large number of wells have been drilled in the country. The absence of a public platform providing access to past drilled data hampers the ability of potential investors to predict rig days accurately before actual drilling operations. As a result, operators often estimate rig days either excessively or inadequately, leading to adverse effects on project economics.

India possesses a substantial Exploration and Production (E&P) database at the National Data Repository (NDR), which can be effectively utilized to envisage such factors. This study aims to create a template that visualizes the average rig days and ROP in the Indian sedimentary basins, enabling investors to make informed decisions before committing to drilling activities during hydrocarbon exploration.

Methodology
The methodology employed in this study follows a specific workflow shown in Figure 1. It begins with data scouting, utilizing the National Data Repository (NDR) master data storage (MDS), which contains a comprehensive dataset of over 195000 wells of various types, including exploratory, appraisal, development, core, and wildcat wells until March 2022. Figure 2 shows the location of the wells which are considered for analysis.

*Correspondence: Surajit Gorain, Directorate General of Hydrocarbons, Ministry of Petroleum and Natural Gas, Uttar Pradesh, India, e-mail: dr.surajitgorain@gmail.com

© 2023 The Author(s). Published by Reseap Journal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
In the second step, exceptional wells characterized by extremely low or high rig times, attributed to factors such as local geologic conditions, special well specifications, contractor issues, timely availability of drilling rigs and equipment, market-related factors, and local administrations, are filtered out and not included in the analysis. Approximately 3000 wells are filtered out through this process. After filtering out the exceptional wells, the wells are segmented basin-wise. Frequency plots are generated to visualize the distribution of wells across different basins (Figure 3). The plots indicate that a majority of wells are drilled in the Cambay, Mumbai offshore, and Assam Basins.

The rig time and target depth of each well are noted using the information available in Well Completion Report (WCR). The ART and ATD for each basin are calculated using a simple averaging principle. In the context of rig operations, one must consider that the duration of these operations is influenced by a combination of geological and non-geological factors. To illustrate the variations in rig days associated with geological aspects, two contributing factors, ART and ATD, are combined. This introduces the concept of EOD, which is essentially a normalized ART, representing the ratio of ATD to ART.

The critical aspect of this workflow is the positioning of representative locations. As multiple wells have been drilled in each basin, and the wells are distributed throughout the basin, it is decided to represent each basin by the position of a well whose drilling completion time is closest to the average drilling completion time of that basin. In this way, all the data points are represented by a single location, simplifying the visualization and analysis process.

Results and Discussions

After the data analysis, several visual representations are created. Figure 4 represents the bubble plot of average rig days and average target depth in Indian basins. Figure 5 depicts a bubble plot of the average easiness of drilling in Indian basins. Additionally, a contour map based on ATD data points is prepared and shown in Figure 6.

The bubble plot of average rig days and target depth reveals (Figure 4) that the ART for all Indian basins is around 90 days. Basins with higher ART values are marked with red bubbles, while those with lower values are marked with blue bubbles. This map provides a comprehensive understanding of

Table 1

<table>
<thead>
<tr>
<th>Basin</th>
<th>Average Rig Days (ART)</th>
<th>Average Target Depth (ATD)</th>
<th>Average Easiness of Drilling (EOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cambay</td>
<td>1500</td>
<td>3000</td>
<td>>80m/d</td>
</tr>
<tr>
<td>Mumbai Offshore</td>
<td>2000</td>
<td>2500</td>
<td>>80m/d</td>
</tr>
<tr>
<td>Assam</td>
<td>2500</td>
<td>2000</td>
<td>>80m/d</td>
</tr>
<tr>
<td>Bengal</td>
<td>3000</td>
<td>2200</td>
<td>>80m/d</td>
</tr>
<tr>
<td>Mahanadi</td>
<td>3500</td>
<td>1800</td>
<td>>80m/d</td>
</tr>
<tr>
<td>Pranhita Godavari</td>
<td>4000</td>
<td>1500</td>
<td>>80m/d</td>
</tr>
<tr>
<td>Andaman Deep-Water</td>
<td>5000</td>
<td>1000</td>
<td>>80m/d</td>
</tr>
</tbody>
</table>

References

Advances, there is currently no available document or template algorithm (ROA), as well as artificial intelligence (AI) and metaheuristic techniques like the rain optimization algorithm. Researchers have also explored alternative approaches, such as the (PDC) model incorporating confined compressive strength. This influential empirical model for ROP optimization [3], which demonstrated the impact of overbalanced pressure on Weight on Bit (WOB), depth, and revolutions per minute (RPM). Researchers empirically expressed for bit life and ROP using Weight on Bit (WOB).

In the past few decades, significant research has been conducted investors to make informed decisions before committing to India possesses a substantial Exploration and Production (E&P) sector, which includes a comprehensive dataset of exploration and production (E&P) activities. The NDR (National Data Repository) is considered for analysis.

The critical aspect of this workflow is the positioning of ARM in each basin, and the wells are distributed throughout the basin. In this way, all the data workflow shown in Figure 1. It begins with data scouting, illustrating the variations in rig days associated with geological, economic, engineering, and contractor issues, timely availability of drilling rigs and local geologic conditions, specific well specifications, and other basin-specific challenges and complexities.

Figure 5. Bubble plot illustrating the average easiness of drilling in Indian basins, presenting a graphical representation of the average ease or difficulty of drilling operations within Indian basins, using bubbles to depict different levels of drilling ease.

Figure 6. Contour map showcasing the average target depth within Indian basins, utilizing contour lines to represent the average depth of the targeted reservoirs, providing a visual overview of the depth patterns across the Indian basins.

The drilling time required on a basin-wise basis, aiding in the estimation of drilling costs for future wells in relatively new areas.

The bubble plot of the average easiness of drilling in Indian basins (Figure 5) demonstrates that basins like Assam-Arakan fold belt, Assam-shelf, Ganga Punjab, Pranhita Godavari, Purnea on land, Himalayan foreland, Kutch on land, Vindhyan, Saurashtra on land, and South Rewa basins have below-average EOD. On the other hand, Cambay on land, Bengal, Mahanadi, Cauvery, and Andaman deep-water basins have above-average EOD.

The contour map of average target depth within Indian basins provides insight into the structural variation or basement configuration of the basin (Figure 6). For example, the ATD ranges around 2000-2500m in basins such as Cambay, Kutch-Saurashtra, Decan syncline, Vindhya, Satpura, Narmada, South Rewa, and Ganga Basin. In off shore part of Krishna Godavari (KG), Cauvery (CY), Mahanadi (MN), Kerala-Konkan (KK), Mumbai (MB), and Kutch- Saurashtra (KS), the ATD is around 3500-4500m. Meanwhile, in the northeastern part of India (Assam, Arunachal, and Tripura), the ATD is around 3000m.

A thorough and extensive study was conducted to identify the key factors that contribute to the challenges and complexities encountered during drilling operations across various basins. The findings of this study were compiled into a comprehensive table, aiming to provide investors with essential information and insights prior to making any drilling commitments. Table 1 presents a detailed overview of the basin-wise challenges and complexities identified in the study, serving as a valuable resource for investors to make well-informed decisions. It provides a comprehensive analysis of the specific challenges and complexities encountered in each basin.
In India that can accurately envisage the Average Rig Time hybrid models, for accurate ROP prediction. Despite these algorithm (ROA), as well as artificial intelligence (AI) and metaheuristic techniques like the rain optimization physics-based models rely on empirical coefficients and are demonstrated the impact of overbalanced pressure on drillability [2]. Bourgoyne and Young developed a highly significant research has been conducted for drilling activities during hydrocarbon exploration. The absence of a public platform providing access to even though a large number of wells have been drilled in the country.

Methodology

In the past few decades, significant research has been conducted to understand the factors influencing the Rate of Penetration. These models attempt to combine a combination of geological and non-geological factors. To consider that the duration of these operations is influenced by local geologic conditions, special well specifications, and average target depth in Indian basins. Figure 5 depicts a contour map of average target depth within Indian basins. Figure 5 depicts a contour map of average target depth within Indian basins. The critical aspect of this workflow is the positioning of the data analysis, several visual representations are prepared and shown in Figure 6.

The bubble plots depicting the average rig time (ART), average total depth (ATD), and average easiness of drilling (EOD) reveal interesting insights about different basins. In the Bengal and Mahanadi Basins, the average EOD is high (>80 m/d), while the ART is low, despite the relatively high ATD.
(>4000m). This suggests that drilling operations in these basins are efficient and productive. In contrast, the Cambay Basin exhibits a low ART due to the focus on relatively shallow exploration, whereas the northeastern area experiences lower drilling efficiency, resulting in a higher ART. The western offshore areas demonstrate smooth drilling operations with favorable EOD.

Overall, these templates provide a valuable understanding of the average rig days and drilling efficiency on a basin-by-basin basis. They serve as reliable benchmarks for cost estimation during drilling and guide future exploration strategies. By utilizing this information, potential investors can make informed decisions regarding the time and financial commitments required for drilling activities. This knowledge proves especially useful during the bidding process for exploration acreage under the Open Acreage Licensing Policy (OALP) and for assessing project feasibility. Thus, this study significantly assists potential investors by providing essential references for time and cost estimations, enabling them to make informed decisions when venturing into drilling commitments and subsequent projects.

Disclosure statement
No potential conflict of interest was reported by the authors.

References